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This paper is concerned with the study of the problem of a field of
steady-state vibrations excited in an elastic half-space by means of
a rigid circular piston with an infinite rigid and smooth collar.
Formulas for the active and reactive resistance of the connection
between the fleld of wave propagation and the piston are obtained in
terms of tabulated functions. Results of the analysis are presented
for the case of driving a piston into an elastic Poisson medium.

Let us study an elastic half-space z > 0. A circular piston of radius
¢ is oscillating harmonically according to the law dz/dt = v expliwt)
in the opening of a rigid collar at the surface of the half-space. Contact
of the piston with the elastic medium is assured during the entire cycle
of the oscillation by some constant load, such that the piston executes
smal]l oscillations about the position of equilibrium. Because of the
principle of superposition of states of stress in the linear theory of
elasticity the static field and the field of steady-state oscillations
are independent,

The analysis of the latter reduces to the solution of the dynamic
equations of the theory of elasticity with the condition that the normal
displacements at the points under the rigid piston are equal to z =
(v/iw) expliwt), where v is the amplitude of the velocity of the piston.
At points under the rigid collar the normal displacements are equal to
zero, In calculations where the dimensions are large, the collar can be
assumed to be infinite. The surface of the piston and the collar will be
also assumed to be sufficiently smooth, such that the shear stresses that
might arise on the surface of the medium can be neglected.

The mathematical problem of the analysis of the wave field, which de-
pends on time as exp(iwt), reduces to finding bounded solutions of the
equations on the amplitudes of the scalar displacement potential ¢ and
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the angular component of the vector displacement potential /. There 1is
only a single angular component of i because of the symmetry of the
problem. The equations
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are to be solved for the boundary conditions representing the given
values of the shear stresses T, and normal displacements u, at the sur-
face:
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are the wave numbers corresponding to the speeds of propagation of longi-
tudinal and transverse waves a and b (p is the density of the medium, and
A and p are the Lame constants).

The solution of equations (1) and (2) by means of separation of vari-
ables yields the following general representation of the bounded solutions:

=\ C,(\Jo(\)exp(— 2V N2 —k2) dx (5)

o= C. )T (r)exp (— 2V E—F) dr (6)

where the branches of the roots are chosen to be positive for large
values of A .
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The functions C, (A) and C,(A) are determined from the boundary condi-
tions. Subst1tut1on of (5) and (6) into (3) and (4) yields

g TL ) 2NV R —RgZ €y (V) 4 (ko — 202) C, (M)} dh = 0 (7)
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Taking into account the discontinuous Weber integral [1]
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t/c (r<c)
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we see that in order to satisfy equalities (7) and (8) it is sufficient
to let
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Then
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Thus the solution is given by the following formulas
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In the acoustic case (k, » ) formula (9) gives a new representation
of the Rayleigh integral [5] for the displacement potential

o
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where R is the distance from a point in the field (r, 6, z) to an element
of the piston with coordinates (p, ¢)

R =Vz*+r*+ p* —2rpcos (p —9)
and the integration is performed over the surface of the piston S.

On the other hand, because of formula (11), one can express the solu-
tion (9), (10) in terms of the integral

Ty = g {| 45 as

as follows:
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Without dwelling on the study of the wave propagation field, whose
potentials are given by the formulas (9), (10) or (12), (13), we shall
proceed to the more complicated problem of determining the active and re-
active resistance of the connection of the piston with the field of pro-
pagation. The total mechanical impedance of the piston Z relates the
reaction force F of the elastic medium due to the piston to its velocity v

Fexp (ivt) = Zvexp (int)

where the force acting on the piston is equal to the integral over the
surface of the piston S of the normal stress o in the medium of the
surface taken with a reversed sign:

F—— S§ Suz |0 dS (14)
Since
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and when the values of the potentials (9), (10) and z = 0 are substituted
here we obtain

S g —fimpvcg Ty (he) Jo (r) @ (1) dh (15)
where °
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From this it can be seen that for A o o
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which means that the integral (15) is not convergent in the usual sense.
The absence of convergence means that the analytical expression foro .
used is not valid at z = 0, which is quite natural with the discontinuous
boundary conditions (4) for u,.

We have to determine the limiting value of ¢, as z » 0. Consequently,
equation (15) makes no sense if it is to be understood in terms of con-
vergent integrals, Yet, expression (15) will acquire a completely deter-
mined sense if one agrees to study the integration symbol as a limiting

value of the convergent integral
oo

S T10:0) 7o () @ (3) dh = lim g e T, (Ae) Jo (M) D (N) d,
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of course, if such a limiting value exists. Such a way of using divergent
integrals in computations, originating with Euler and Poisson, is known
by the name of the Abel method of summation of divergent integrals [3].
Thus, when using the symbol of the divergent integral we will have in
mind operations with a convergent integral up to the limiting operation.

When (15) is substituted into (14) we obtain

Z = impcggg J1 (he) o (W) © () dhdS = 2riwpe SSJl (he) Jo (\r) @ (M) d\ rdr
80 00

Interchanging the order of integration we will integrate with respect
to r:
Cc
Slo(lr) rdr = 2 J, (k)
0

When o
. dA
Z = 2riopc? g J12 (k) @ (1) 2
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the function (16) is represented in the form
Y ()‘) = kL‘ [(2k02 — kb2)2 ()\2 — kaz)—’/l ._l._ 4 (2k02 J— kb2) (lz . kaz)"' .
3
— 4b2 ()\2 —_— kb2)'l| + 4 ()\2 o kaz)'lz — 4 ()\2 . kbz)./']

and the notation
[ea]

An (k) = S Ji (M) (A2 — 2yn—n O (17)

is introduced, where the integral sign is to be understood in the sense
of the Abel summation, then we shall obtain

) (2k 2 — ky2)? 4 (2k 2 — ky?)
Z == 21!1(0?62 [_—T#—L‘ Ao (ka) + “‘—i‘—bz‘L Al (ka) _
4 4 k 4
——k-b'a-Al (ko) -+ WAz( a)"FAz (kb)] (18)
Now we shall evaluate the integrals (17). First of all let us perform
a change of variable
\e=1u (ke = v) (19)
then
o0}
An (k) = g | /12 (@) (@ — o) B
0
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Furthermore, using the Neumann integral,
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Ham
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one can write

An (k) = AL?

byl
2yt 40 du
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With the aid of the recurrence formula

J, (2u sin 0) = “ S;n 8 /1 (2u sin 8) -+ J, (2u sin 6))

written in terms of Bessel integrals

‘/3"
Jy(2usinb) = fis.‘ﬂg X (sin ¢ -} sin 3¢) sin (2u sin 8 sin ¢) dp
we obtain 0

(20)
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An (k) = Py S S S sin ¢ cos® ¢ sin 8 sin (2u sin ¢ sin 6) (u? — )"~ do dbdu
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Now we shall interchange the order of integration and the internal
integral with respect to the variable and sum according to Abel. Then
the integral becomes

oo

B, = S sin (2u sin ¢ sin 0) (u? — v?)*:dy = (x = 2vsin¢sin8)
0 . -
= — 1 (— 1" S sin (at) (1 — 2)r—"adt -1 p2n S sin (xt) (12 — 1)/ dt (21)
0 1

The integral with finite limits is an ordinary integral. It determines
the Struve function with the index n

1 1
r r
gsin (xt) (1 — 2y dt = (nt 1) n( 3
2 2(52)
The second integral is computed using the Schlafli representation

r(n+75)
r (;)(‘2‘)

H;, () (22)
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When the limit

i ¢ —zl (42 n—? : ( +M)
g?lge (2 — )t dt = ZB_M( e )nlxn(z):
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From this it follows that the generalized Mehler-Sonine formula [ 1]

o
I, (x) = 2 sin (xt) df
O @ Er ) e

is correct in the sense of the Abel summation not only for the values
- 1/2 < v < 1/2 but also for all negative values of v.

When formulas (22) and (23) are combined we obtain the following ex-
pression for the integral (21):
(=00 (n +5)T () o
 sin @ \n
2(—{“)

The remaining integrals in expression (20) have the usual meaning.
VYhen (19) is taken into account this expression becomes:

B, = [/a (o sin6) — {H, (o sin 8)] (@ = 2vsing)

An(hy = ED28p (- Lyp (L) pene x
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0
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The integration with respect to € will be accomplished by expanding
the Bessel and Struve functions into power series:

)g,n
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Now one can compute the last integral with respect of ¢:
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which can be written in the following way:
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It can easily be seen that

MY pyfon—19n
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From this, assuming that D_ is a function which is complete and bounded

at zero, one obtalns a recurrence formula
v
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0
For n = 0 the series (25) becomes
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The recurrence formula yields

pi = — - {2t L [ Bl 0] -
- -%‘;~[1-— J (2v)%h (0) iil(z(:;):m (2v)] 28)
where i )
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are tabulated functions. Similarly
Dy(k)= — o {1 — -v%i (7 (20) — J, (20)] vdo-+ fT‘S (H (20) — H, (20)] vdv} -
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Now expression (24) becomes:
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Substitution of these functions into formula (18) yields the following
final formulas for the resistance of the driving of the piston

Z = Spa [R (kqc; kie) + iX (kqc, kic)]

where S = nc? 1is the area of the piston, p is the density of the medium,
a is the speed of propagation of the lingitudinal waves, ¢ is the radius
of the piston, and k_ and k; are the wave numbers corresponding to speeds
of propagation of longitudinal and transverse waves. The dimensionless
active resistance R and the reactive resistance X of the connection of
the piston with the wave propagation field is expressed in terms of
tabulated functions in the following fashion:
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In the case of a fluid (b = 0), formulas (29) and (30) become the
well-known Rayleigh formulas.

The above dependence of the mechanical impedance of a piston with a
rigid collar upon the parameters p, A and p can be utilized, for instance,
for the determination of the physical properties of elastic bodies (in
particular rock strata), just as the analysis of the impedance of a
piston acting upon a fluid flow [ 4,5] can be used for the measurement of
the flow velocity.

Formulas (29) and (30) are easily studied in the limiting cases. For
wavelengths that are small compared to the dimensions of the driver one
has k ¢ >> 1 and kyc >> 1. In this case the reactive resistance is small
and the dimensionless active resistance approaches unity, so that

Z = Spa

which means that the character of the driving is the same as in the case
of a high-frequency driving of a fluid of uniform density moving at the
speed of sound, equal to the speed of propagation of longitudinal waves.

At low frequencies, when k ¢ << 1 and kyc << 1 we obtain
o[£+ (3]
b ()~ T+ )]

To avoid misunderstanding let us note that in the last formulas the
transition to the case of a fluid (k, » =) is impossible since they were
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obtained under the condition that k p¢ << 1, i.e. for media in which the
speed of propagation of transverse waves was comparable to the speed of
longitudinal waves.

TABLE 1.
R(ke) Xcke)
Elastic Ideal Elastic Ideal
Poisson fluid Poisson fluid
kac medium medium

0.25 0.0376 0.0309 0.2063 0.2087
0.50 0.4461 0.1199 0.3772 C.3969
0.75 0.2960 0.2561 0.48%1 0.5471
1.00 0.4560 0.4233 0.5345 0.6468
1.25 (. 5967 0.6023 0.5232 0.6905
1.50 0.7005 0.7740 0.4761 0.6801
1.75 0.7639 0.9245 0.4184 0.6238
2.00 0.7956 1.0330 0.3675 0.5349
2.25 0.8101 1.1027 0.3323 0.4293
2.50 0.8204 1.1310 0.3188 0.3231
2.75 0.8337 1.1242 0.2993 0.2300
3.00 0.8508 1.0922 0.2875 0.159%4
3.25 0.8681 1.0473 0.2724 0.1159
3.50 0.8822 1.0013 0.2543 0.0989
3.75 0.8882 0.9639 0.23685 0.1036
4.00 0.8902 0.9413 0.2226 0.1220

The analysis using formulas (29) and (30) is also sufficiently simple
even in those cases when it becomes necessary to enlarge the extent or
the accuracy of the existing tables of integrals

x x

7@ ={L@d B@={Hed

V]

As an illustration we present in Table 1 a computation of the values
of the dimensionless active and reactive resistance using the formulas
(29) and (30) for the case of driving of a Poisson medium (A = p). For
comparison also the corresponding values for the case of the fluid [6]
are presented. The argument is kc, wherein the wave number corresponds
to the value of the speed of longitudinal waves.
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